2,286 research outputs found

    A Novel Convex Relaxation for Non-Binary Discrete Tomography

    Full text link
    We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations

    PUK7 IMMUNOSUPPRESSANT THERAPY PATTERNS AND ITS COSTS IN POST KIDNEY TRANSPLANT PATIENTS IN THE NATIONAL TRANSPLANT PROGRAM IN BRAZIL

    Get PDF

    Amphibians on the hotspot: Molecular biology and conservation in the South American Atlantic Rainforest

    Get PDF
    Amphibians are the focus of a recent debate and public attention owing to the global decline in their populations worldwide. Amphibians are one of the most threatened and poorly known groups of vertebrates in several geographic areas, even though they play a central role in their own ecosystems. At different levels, amphibians make their contribution to proper ecosystem functioning. They act as regulators of the food web and nutrient cycling, and they also provide several valuable ecosystem services, e.g., as a food source and as animal models for lab research. In this sense, it seems clear that the maintenance of amphibian diversity should be one of the major goals for the several countries where their population decline is observed. However, we are still struggling with the very first step of this process, i.e., the correct identification of the amphibian species diversity. Over the past few decades, research on molecular identification of amphibians using DNA barcoding has encountered some difficulties related to high variability in the mitochondrial genome of amphibians, and a research gap is noticeable in the literature. We herein evaluated both COI and 16S rRNA mitochondrial genes for the molecular identification of frogs and tadpoles in a large fragment of the South American Atlantic Rainforest in Rio de Janeiro, Brazil. Our results suggest that both COI and 16S rRNA are informative markers for the molecular identification of the amphibian specimens with all specimens unambiguously identified at the species level. We also made publicly available 12 new sequences of Atlantic Rainforest amphibian species for the first time, and we discussed some conservation issues related to amphibians within the Atlantic Rainforest domains in the state of Rio de Janeiro, Brazil.The authors benefited from grants provided to CFDR (304791/2010-5; 470265/2010- 8 and 302974/2015-6) from Conselho Nacional do Desenvolvimento Cientifico e Tecnologico (CNPq) and through "Cientistas do Nosso Estado" Program from FAPERJ to CFDR (process No. E-26/ 102.765.2012 E-26/202.920.2015). We would like to thank C. Haddad (Universidade Estadual Paulista) and M. L. Lyra (Universidade Estadual Paulista) for some of the specimens and the primers used in the present manuscript and L. A. Fusinatto, who kindly revised the manuscript offering helpful suggestions. FP was supported by the Portuguese Foundation for Science and Technology (FCT) [IF/01356/2012] and Northern Regional Operational Programme (NORTE2020) through the European Regional Development Fund (ERDF) [MARINFO NORTE-01-0145-FEDER- 000031]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes

    Get PDF
    Drug resistant infections represent one of the most challenging medical problems of our time. D-cycloserine is an antibiotic used for six decades without significant appearance and dissemination of antibiotic resistant strains, making it an ideal model compound to understand what drives resistance evasion. We therefore investigated why Mycobacterium tuberculosis fails to become resistant to D-cycloserine. To address this question, we employed a combination of bacterial genetics, genomics, biochemistry and fitness analysis in vitro, in macrophages and in mice. Altogether, our results suggest that the ultra-low rate of emergence of D-cycloserine resistance mutations is the dominant biological factor delaying the appearance of clinical resistance to this antibiotic. Furthermore, we also identified potential compensatory mechanisms able to minimize the severe fitness costs of primary D-cycloserine resistance conferring mutations

    Hyperoside Supplementation in Preservation Media Surpasses Vitamin C Protection Against Oxidative Stress-Induced Damages in Human Spermatozoa

    Get PDF
    Background/Aims: Oxidative Stress (OS) is reported as one of the main causes of male infertility. Infertile couples often resort to assisted reproductive technology (ART) to achieve parenthood. However, preparation for ART protocols increases the exposer of gametes to OS. Thus, it is crucial to find suitable preservation media that can counteract the OS-induced damages in spermatozoa. In this work, we tested and compared the efficiency of vitamin C (VC) and hyperoside (HYP) as potential antioxidant supplements for sperm preservation media. Methods: We evaluated the cytotoxicity of HYP (0, 5, 50, 100, and 500 µM) in spermatozoa. After incubation of sperm cells with VC (600 µM) and HYP (100 and 500 µM), in the presence and absence of H2O2 (300 µM), the following parameters were assessed: total sperm motility and vitality, OS biomarkers expression, total antioxidant capacity (TAC) of the media, percentage of DNA fragmentation, mitochondrial membrane potential (MMP), and metabolite quantification of the media by proton nuclear magnetic resonance (1H-NMR). Results: The supplementation with VC (600 µM) and HYP (100 and 500 µM) did not induce any deleterious effects to the physiology and metabolism of the spermatozoa, after 1-hour of treatment. In the presence of H2O2 (300 µM), both VC and HYP were able to prevent some of the deleterious effects of H2O2 in sperm, which were represented by an increase in sperm motility, a decrease in DNA fragmentation, and a decreasing trend in lipid peroxidation levels. However, these antioxidants were not able to prevent the decrease of MMP associated with H2O2 treatment, nor were able to prevent the conversion of pyruvate into acetate (a reaction promoted by H2O2). Conclusion: The supplementation of sperm preservation media with VC and HYP could be beneficial for the preservation of sperm physiology. From the antioxidant conditions tested, the supplementation of media with HYP (100 µM) demonstrated the best results regarding sperm preservation, evidencing the higher antioxidant capacity of HYP compared to VC. Nevertheless, none of the antioxidants used was able to prevent the metabolic alterations promoted by H2O2 in spermatozoa.This work was supported by Fundação para a Ciência e a Tecnologia - FCT to Sara C. Pereira (2021.05487.BD); David F. Carrageta (SFRH/BD/136779/2018); Marco G. Alves (IFCT2015 and PTDC/MEC-AND/28691/2017); LAQV-REQUIMTE (UIDB/50006/2020); UMIB (UIDB/00215/2020, and UIDP/00215/2020); ITR - Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020). Pedro F. Oliveira was funded by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus - Institutional Call - reference CEECINST/00026/2018

    The consequences of the effects of the chemotherapeutic drug (vincristine) in organs and the influence on the bioavailability of two radio-biocomplexes used for bone evaluations in balb/c female mice

    Get PDF
    The development of animal model to evaluate the toxicological action of compounds used as pharmaceutical drugs is desired. The model described in this work is based on the capability of drugs to alter the bioavailability of radiopharmaceuticals (radiobiocomplexes) labeled with technetium-99 m(99mTc). There are evidences that the bioavailability or the pharmacokinetic of radiobiocomplexes can be modified by some factors, as drugs, due to their toxicological action in specific organs. Vincristine is anatural product that has been utilized in oncology. The vincristine effect on the bioavailability of the radiobiocomplexes 99mTc- ethylenediphosphonic acid (99mTc-MDP) and 99mTc-pyrophosphate (99mTc- PYP) in Balb/c female mice was evaluated. The fragments of kidney were processed to light microscopy and transmission electron microscopy. The aim of this work was to study at structural and ultrastructural levels the alterations caused by vincristine in organs. One hour after the last dose ofvincristine, 99mTc-PYP or 99mTc-MDP was injected, the animals were sacrificed and the percentage of radioactivity (%ATI) was determined in the isolated organs. Concerning 99mTc-PYP, the %ATI (i) decreased in spleen, thymus, lymph nodes (inguinal and mesentheric), kidney, lung, liver, pancreas, stomach, heart and brain and (ii) increased in bone and thyroid. Concerning 99mTc-MDP, the %ATI (iii) decreased in spleen, thymus, lymph nodes (inguinal and mesentheric), kidney, liver, pancreas,stomach, heart, brain, bone, ovary and uterus. In conclusion, the toxic effect of vincristine in determined organs could be responsible for the alteration of the uptake of the studied radiobiocomplexes

    Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles

    Get PDF
    Cell-cell communication is an important mechanism for information exchange promoting cell survival for the control of features such as population density and differentiation. We determined that Plasmodium falciparum-infected red blood cells directly communicate between parasites within a population using exosome-like vesicles that are capable of delivering genes. Importantly, communication via exosome-like vesicles promotes differentiation to sexual forms at a rate that suggests that signaling is involved. Furthermore, we have identified a P. falciparum protein, PfPTP2, that plays a key role in efficient communication. This study reveals a previously unidentified pathway of P. falciparum biology critical for survival in the host and transmission to mosquitoes. This identifies a pathway for the development of agents to block parasite transmission from the human host to the mosquito.Neta Regev-Rudzki, Danny W. Wilson, Teresa G. Carvalho, Xavier Sisquella, Bradley M. Coleman, Melanie Rug, Dejan Bursac, Fiona Angrisano, Michelle Gee, Andrew F. Hill, Jake Baum, Alan F. Cowma

    Amyotrophic lateral sclerosis-motor neuron disease, monoclonal gammopathy, hyperparathyroidism, and B12 deficiency: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Amyotrophic lateral sclerosis (the most common form of motor neuron disease) is a progressive and devastating disease involving both lower and upper motor neurons, typically following a relentless path towards death. Given the gravity of this diagnosis, all efforts must be made by the clinician to exclude alternative and more treatable entities. Frequent serology testing involves searching for treatable disorders, including vitamin B12 deficiency, parathyroid anomalies, and monoclonal gammopathies.</p> <p>Case presentation</p> <p>We present the case of a 78-year-old Caucasian man with all three of the aforementioned commonly searched for disorders during an investigation for amyotrophic lateral sclerosis.</p> <p>Conclusions</p> <p>The clinical utility of these common tests and what they ultimately mean in patients with amyotrophic lateral sclerosis is discussed, along with a review of the literature.</p
    corecore